2013高考理科数学直线与圆、圆与圆的位置关系复习教案

2013年高考第一轮复习数学北师(江西版)理第八章8.4 直线与圆、圆与圆的位置关系
考纲要求
1.能根据给定直线、圆的方程判断直线与圆的位置关系.
2.能根据给定两个圆的方程判断两圆的位置关系.
3.能用直线和圆的方程解决一些简单的问题.
4.初步了解用代数方法处理几何问题的思想.
5.了解空间直角坐标系,会用空间直角坐标表示点的位置,会推 导空间两点间的距离公式.

知识梳理
1.直线与圆的位置关系
(1)直线与圆的位置关系有三种:____、__ __、____.
判断直线与圆的位置关系常见的有两种方法:
①代数法:把直线方程与圆的方程联立方程组,消去x或y整理成一元二次方程后,计算判别式Δ=b2-4ac>0⇔  ,=0⇔  ,<0⇔  .
②几何法:利用圆心到直线的距离d和圆的半径r的大小关系:
d<r⇔____,
d=r⇔____,
d>r⇔____.
(2)圆的切线方程:
若圆的方程为x2+y2=r2,点P(x0,y0)在圆上,则过P点且与圆x2+y2=r2相切的切线方程为____________.
注:点P必须在圆x2+y2=r2上.
经过圆(x-a)2+(y-b)2=r2上点P(x0,y0)的切线方程为______________.
经过圆x2+y2+Dx+Ey+F=0上点P(x0,y0)的切线方程为__________.
(3)直线与圆相 交:
直线与圆相交时,若l为弦长,d为弦心距,r为半径,则有r2=______,即l=2r2-d2,求弦长或已知弦长求其他量的值,一般用此公式.
2.圆与圆的位置关系
(1)圆与圆的位置关系可分为五种:_____、_____、_____、_____、_____.
(2)判断圆与圆的位置关系常用方法:
①几何法:设两圆圆心分别为O1,O2,半径为r1,r2(r1≠r2),则|O1O2|>r1+r2⇔____;|O1O2|=r1+r2⇔____;|r1-r2|<|O1O2|<r1+r2⇔____;|O1O2|=|r1-r2|⇔____;|O1O2|<|r1-r2|⇔____.
②代数法:
方程组x2+y2+D1x+E1y+F1=0,x2+y2+D2x+E2y+F2=0,
有两组不同的实数解⇔两圆____;
有两组相同的实数解⇔两圆____;
无实数解⇔两圆相离或内含.
3.在空间直角坐标系中,O叫做坐标原点,x,y,z轴统称为坐标轴,由坐标轴确定的平面叫做坐标平面.这儿所说的空间直角坐标系是空间右手直角坐标系:即伸开右手,使拇指指向______轴的正方向,食指指向______轴的正方向,中指指向______轴的正方向.也可这样建立坐标系:令z轴的正方向竖直向上,先确定x轴的正方向,再将其按逆时针方向旋转90°就是y轴的正方向.
4.空间点的坐标
设点P(x,y,z)为空间坐标系中的一点,则(1)关于原点的对称点是______;(2)关于x轴的对称点是______;(3)关于y轴的对称点是______;(4)关于z轴的对称点是______;(5)关于xOy坐标平面的对称点是______;(6)关于yOz坐标平面的对称点是______;(7)关于xOz坐标平面的对称点是______.
5.空间两点间的距离
设A(x1,y1,z1),B(x2,y2,z2),则|AB|=__________.
基础自测
1.在下列直线中,与圆x2+y2+23x-2y+3=0相切的直线是(  ).
A.x=0 B.y=0
C.x-y=0 D.x+y=0
2.两圆x2+y2-2y=0与x2+y2-4=0的位置关系是(  ).
A.相交 B.内切
C.外切 D.内含
3.直线l:y=k(x-2)+2与圆C:x2+y2-2x-2y=0有两个不同的公共点,则k的取值范围是(  ).
A.(-∞,-1) B.(-1,1) C.(-1,+∞) D.(-∞,-1)∪(-1,+∞)
4.圆心在原点且与直线x+y-2=0相切的圆的方程为________.
5.直线l:y=k(x+3)与圆O:x2+y2=4交于A,B两点,|AB|=22,则实数k=__________.
6.已知A(x,2,3),B(5,4,7),且|AB|=6,则x的值为__________.
思维拓展
1.在判断直线与圆相交时,当直线方程和圆的方程都含有字母时,如何判断?
提示:若给出的方程都含有字母,利用代数法和几何法有时比较麻烦,这时只要说明直线过圆内的定点即可.
2.在求过一定点的圆的切线方程时,应注意什么?
提示:①首先判断点与圆的位置关系,若点在圆上,该点即为切点,则切线只有一条;若点在圆外,切线应有两条;若点在圆内,无切线.②若求出的切线条数与判断不一致,则可能漏掉了切线斜率不存在的情况了.

一、直线与圆的位置关系
【例1】点M(a,b)是圆x2+y2=r2内异于圆心的一点,则直线ax+by=r2与圆的交点个数为(  ).
A.0 B.1 C.2 D.需要讨论确定
方法提炼直线与圆的位置关系有两种判定方法:代数法与几何法.由于几何法一般比代数法计算量小,简便快捷,所以更容易被人接受.同时,由于它们的几何性质非常明显 ,所以利用数形结合,并充分考虑有关性质会使问题处理起来更加方便.
请做[针对训练]4
二、直线与圆相交问题
【例2-1】过原点且倾斜角为60°的直线被圆x2+y2-4y=0所截得的弦长为(  ).
A.3 B.2 C.6 D.23
【例2-2】已知点P(0,5)及圆C:x2+y2+4x-12y+24=0.若直线l过点P且被圆C截得的弦长为43,求l的方程.
方法提炼直线与圆相交求弦长有两种方法:
(1)代数方法:将直线和圆的方程联立方程组,消元后得到一个一元二次方程.在判别式Δ>0的前提下,利用根与系数的关系求弦长.弦长公式l=1+k2•|x1-x2|=(1+k2)[(x1+x2)2-4x1x2]=1+k2•Δ|a|.其中a为一元二次方程中的二次项系数.
(2)几何方法:若弦心距为d,圆的半径长为r,则弦长l=2r2-d2.
代数法计算量较大,我们一般选用几何法.
请做[针对训练]1
三、圆的切线问题
【例3】从圆(x-1)2+(y-1)2=1外一点P(2,3)向该圆引切线,求切线方程.
方法提炼求圆的切线方程,一般设为点斜式方程.首先判断点是否在圆上,如果过圆上一点,则有且只有一条切线,如果过圆外一点,则有且只有两条切线.若利用点斜式方程求得过圆外一点的切线只有一条,则需结合图形把斜率不存在的那条切线补上.
请做[针对训练]5
四、圆与圆的位置关系
【例4-1】已知圆C1: x2+y2-2mx+4y+m2-5=0,圆C2:x2+y2+2x-2my+m2-3=0,m为何值时,
(1)圆C1与圆C2外切;
(2)圆C1与圆C2内含.
【例4-2】已知圆C的圆心 在直线x-y-4=0上,并且通过两圆C1:x2+y2- 4x-3=0和C2:x2+y2-4y-3=0的交点,
(1)求圆C的方程;
(2)求两圆C1和C2相交弦所在直线的方程.
方法提炼1.判断两圆的位置关系,通常是用几何法,从圆心距d与两圆半径长的和、差的关系入手.如果用代数法,从交点个数也就是方程组解的个数来判断,但有时不能得到准确结论.
2.若所求圆过两圆的交点,则可将圆的方程设为过两圆交点的圆系方程C1+λC2=0(λ≠-1).
3.利用两圆方程相减即可得到相交弦所在直线的方程.
请做[针对训练]2
五、空间直角坐标系
【例5-1】在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),点M在y轴上,且M到A与B的距离相等,则M的坐标是__________.
【例5-2】求点A(1,2,-1)关于x轴及坐标平面xOy的对称点B,C的坐标,以及B,C两点间的距离.
方法提炼求某点关于某轴的对称点时,“关于谁对称谁不变”,如点(x,y,z)关于x轴的对称点是(x,-y,-z);求某点关于某平面的对称点时,“缺哪个变哪个”,如点(x,y,z)关于平面xOy的对称点是(x,y,-z);点(x,y,z)关于原点的对称点是(-x,-y,-z).
请做[针对训练]3

考情分析
通过分析近几年的高考试题,可以看到对于本节内容,主要是考查直线与圆的位置关系,以选择题、填空题为主,题目难度适中,着重于基础知识、基本方法的考查.整个命题过程主要侧重以下几点:(1)直线与圆、圆与圆的位置关系是考查的重点,特别是直线与圆的位置关系;(2)圆中几个重要的度量关系.在直线与圆的位置关系中,弦心距、半弦长、半径构成的直角三角形是解决问题的核心;在切线问题中,切线长、半径、圆外的点与圆心的连线构成的直角三角形是解决切线问题的载体.
针对训练
1.过原点的直线与圆x2+y2-2x-4y+4=0相交所得弦的长为2,则该直线的方程为__________.
2.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦长 为23,则a=________.
3.已知在空间中有△ABC,其中A(1,-2,-3),B(-1,-1,-1),C(0,0,-5),则△ABC的面积等于__________.
4.已知圆x2 +y2=2和直线y=x+b,当b为何值时,圆与直线
(1)有两个公共点;
(2)只有一个公共点;
(3)没有公共点.
5.自点A(-3,3)发出的光线l射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,如图所示,求光线l所在直线的方程.


参考答案

基础梳理自测
知识梳理
1.(1)相切 相交 相离 ①相交 相切 相离 ②相交 相切 相离
(2)x0x+y0y=r2 (x0-a)(x-a)+(y0-b)(y-b)=r2 x0x+y0y+D•x0+x2+E•y+y02+F=0 (3)d2+l22
2.(1)相离 外切 相交 内切 内含
①相离 外切 相交 内切 内含 ②相交 相切
3.x y z
4.(-x,-y,-z) (x,-y,-z) (-x,y,-z) (-x,-y,z) (x,y,-z) (-x,y,z) (x,-y,z)
5.(x1-x2)2+(y1-y2)2+(z1-z2)2
基础自测
1.B 解析:将圆的方程化为标准方程为(x+3)2+(y-1)2=1,分别结合图形及通过求解圆心到直线距离与半径的关系易得B选项正确(A,B选项均通过作图可直观判断).
2.B 解析:两圆方程可化为x2+(y-1)2=1,x2+y2=4.两圆圆心分别为O1(0,1),O2(0,0),半径分别为r1=1,r2=2.
∵|O1O2|=1=r2-r1,∴两圆内切.
3.D 解析:由题意知,圆心C(1,1)到直线l的距离d=|k-1-2k+2|k2+1<2,解得k≠-1,故k的取值范围是(-∞,-1)∪(-1,+∞).
4.x2+y2=2 解析:圆心(0,0)到直线x+y-2=0的距离d=|-2|12+12=2.
∴圆的方程为x2+y2=2.
5.±147 解析:由已知可求出圆心O到直线l的距离d=2,即|3k|1+k2=2,解得k=±147.
6.1或9 解析:由空间两点间的距离公式,得(x-5)2+(2-4)2+(3-7)2=6,
即(x-5)2=16,解得x=1或x=9.
考点探究突破
【例1】A 解析:由题意知a2+b2<r2,
所以圆心(0,0)到直线ax+by-r2=0的距离d=r2a2+b2>r,
即直线与圆相离,无交点.
【例2-1】D 解析:直线方程为y=3x,圆的方程可化为x2+(y-2)2=4.
圆心(0,2),半径长r=2.
圆心到直线y=3x的距离d=1.
则弦长为2r2-d2=23.
【例2-2】解:圆的方程可化为(x+2)2+(y-6)2=16,圆心(-2,6),半径长r=4.
又直线l被圆截得的弦长为43,
所以圆心C到直线l的距离d=42-(23)2=2.
当直线l的斜率不存在时,直线方程为x=0,此时符合题意;当直线l的斜率存在时,设直线方程为 y-5=kx,即kx-y+5=0.
由|-2k-6+5|k2+1=2,得k=34,
此时l的方程为34x-y+5=0,即3x-4y+20=0.故所求直线方程为x=0或3x-4y+20=0.
【例3】解:当切线斜率存在时,设切线方程为y-3=k(x-2),即kx-y+ 3-2k=0.
∵圆心为(1,1),半径长r=1,
∴|k-1+3-2k|k2+(-1)2=1,∴k=34.
∴所求切线方程为y-3=34(x-2),
即3x-4y+6=0.
当切线斜率不存在时,因为切线过点P(2,3),且与x轴垂直,此时切线的方程为x=2.
【例4-1】解:对于圆C1与圆C2的方程,经配方后得
C1:(x-m)2+(y+2)2=9;
C2:(x+1)2+(y-m)2=4.
(1)如果C1与C2外切,则有(m+1)2+(m+2)2=3+2.
(m+1)2+(m+2)2=25.即m2+3m-10=0,解得m=-5,或m=2.
(2)如果C1与C2内含,则有(m+1)2+(m+2)2<3-2.
(m+1)2+(m+2)2<1,m2+3m+2<0,
解得-2<m<-1.
∴当m=-5,或m=2时,圆C1与圆C2外切;当-2<m<-1时,圆C1与圆C2内含.
【例4-2】解:(1)因为所求的圆过两已知圆的交点,
故设此圆的方程为x2+y2-4x-3+λ(x2+y2-4y-3)=0,(λ≠-1,λ∈R),即(1+λ)(x2+y2)-4x-4λy-3λ-3=0,即x2+y2-4x1+λ-4λy1+λ-3=0,圆心为21+λ,2λ1+λ.
由于圆心在直线x-y-4=0上,
∴21+λ-2λ1+λ-4=0,解得λ=-13,
所求圆的方程为x2+y2-6x+2y-3=0.
(2)将圆C1和圆C2的方程相减,得x-y=0,此即相交弦所在直线的方程.
【例5-1】(0,-1,0) 解析:设M(0,y,0),由(1-0)2+(0-y)2+(2-0)2=(1-0)2+(-3-y)2+(1-0)2,
解得y=-1, 故M(0,-1,0).
【例5-2】解:易知B(1,-2,1),C(1,2,1).
所以|BC|=
(1-1)2+(-2-2)2+(1-1)2=4.
演练巩固提升
针对训练
1.2x-y=0 解析:圆的方程可化为(x-1)2+(y-2)2=1,可知圆心为(1,2),半径为1.
设直线方程为y=kx,则圆心到直线的距离为d=|k-2|1+k2,故有|k-2|1+k2=0,解得k=2.故直线方程为y=2x,即2x-y=0.
2.1 解析:依题,画出两圆位置如下图,公共弦为AB,交y轴于点C,连接OA,则|OA|=2.两圆方程相减,得2ay=2,解得y=1a,
∴|OC|=1a.
又公共弦长为23,∴|AC|=3.
于是,由Rt△AOC可得OC2=AO2-AC2,即1a2=22-(3)2,
整理得a2=1,又a>0,∴a=1.

3.92 解析:根据空间中两点间的距离公式可得:
|AB|=(1+1)2+(-2+1)2+(-3+1)2=3,
|BC|=(-1-0)2+(-1-0)2+(-1+5)2=32
|AC|=(1-0)2+(-2-0)2+(-3+5)2=3.
因为|AB|=|AC|,且|AB|2+|AC|2=|BC|2,
所以△ABC是以A为直角的等腰直角三角形,故其面积S=12|AB||AC|=12×3×3=92.
4.解:方法一:圆心O(0,0)到y=x+b的距离d=|b|2,圆的半径长r=2.
(1)d<r,即-2<b<2时,直线与圆相交,有两个公共点;
(2)d=r,即b=2或b=-2时,直线与圆相切,有一个公共点;
(3)d>r,即b>2或b<-2时,直线与圆相离,没有公共点.
方法二:把直线y=x+b与圆的方程x2+y2=2联立,即y=x+b,x2+y2=2,消去y,整理得2x2+2bx+b2-2=0.
再利用△>0,△=0,△<0,分别确定b的取值,结论同“方法一”.
5.解法一:设入射光线l所在直线方程为y-3=k(x+3).因为点A关于x轴的对称点为A′(-3,-3),所以反射光线所在直线经过点A′.

又∵光线的入射角等于反射角,
∴反射光线所在直线的方程为
kx+y+3k+3=0.
∵反射光线与圆x2+y2-4x-4y+7=0相切,
∴|2k+2+3k+3|k2+1=1,解得k=-34,或k=-43.∴入射光线l所在的直线方程为y-3=-34(x+3),或y-3=-43(x+3),
即3x+4y-3=0,或4x+3y+3=0.
解法二:圆C:x2+y2-4x-4y+7=0关于x轴的对称圆C′的方程为x2+y2-4x+4y+7=0.
因入射光线经x轴反射后与圆C相切,则入射光线所在 直线与圆C′相切.
设l:y-3=k(x+3),即kx-y+3k+3=0.
∵圆C′的圆心(2,-2)到l的距离与半径长相等,∴|2k+2+3k+3|k2+1=1,
∴k=-34,或k=-43.
∴入射光线所在直线方程为
3x+4y-3=0,或4x+3y+3=0.