数学与文化

齐民友

说明。从希腊的文化背景中形成了数学的对象并不只是具体问题,数学所探讨的不是转瞬即逝的知识,而是某种永恒不变的东西。所以,数学的对象必须有明确无误的概念,而且其方法必须由明确无误的命题开始,并服从明确无误的推理规则,借以达到正确的结论。通过纯粹的思维竟能在认识宇宙上达到如此确定无疑的地步,当然会给一切需要思维的人以极大的启发。人们自然会要求在一切领域中都这样去做。正是因为这样,而且也仅仅因为这样,数学方法既成为人类认识方法的一个典范,也成为人在认识宇宙和人类自己时必须持有的客观态度的一个标准。就数学本身而言,达到数学真理的途径既有逻辑的方面也有直觉的方面,但就其与其他科学比较而言,就其影响人类文化的其他部门而言,它的逻辑方法是最突出的。这个方法发展成为人们常说的公理方法。迄今为止,人类知识还没有哪一个部门应用公理方法得到如数学那样大的成功。但是,如果到今天某个知识部门还是只有论断而没有论据,只是一堆相互没有逻辑联系的命题,前后又无一贯性,恐怕是不会有人接受的了。每个论点都必须有根据,都必须持之有理。除了逻辑的要求和实践的检验以外,无论是几千年的习俗、宗教的权威、皇帝的敕令、流行的风尚统统是没有用的。这样一种求真的态度,倾毕生之力用理性的思维去解开那伟大而永恒的谜――宇宙和人类的真面目是什么?――是人类文化发展到高度的标志。这个伟大的理性探索是数学发展必不可少的文化背景,反过来也是数学贡献于文化最突出的功绩之一。
自然数),可是遇到了无理数,后来的希腊人只好采用不可公度理论,因为弄不清,就干脆不讲无理数,而讨论一般的线段长。希腊人甚至不讲数,使希腊数学与其他民族――例如中国――相比呈现了缺点。但即令如此,也要保持高度严整,而不允许采取折衷主义的态度。历史终于证明,正是希腊人开辟了研究无理数系的道路。他们研究数学,却同时考虑数学研究的对象是否存在。希腊人考虑数学对象的存在问题,把存在归结为可构造,然后就问:“用直尺与圆规经有限步骤去三等分任意角可能吗?”因为弄不清是否可能,即没有构造的方法以证明三等分角的存在,他们的几何学中干脆不讲一个角的三分之一,只讲平分线,从不讲角三分线。越向后面发展,数学就出现了越来越多的“不可能性”:x 2 +1=0不可能在实数域中求解,五次以上的方程不能用根式求解。平行线公理能不能证明?到20世纪初才知道是既不能证明又不能否证。大家都说,数学最需要严格性,数学家就要问什么叫严格性?大家都说,数学在证明一串串的定理,数学家就要问什么叫证明?数学越发展,取得的成就越大,数学家就越要问自己的基础是不是巩固。越是在表面上看来没有问题的地方,越要找出问题来。乘法明明是可以交换的,偏偏要研究不可交换的乘法。孟子自嘲地说:“予岂好辩哉?予不得已也!”数学家只需要换一个字:“予岂好‘变’哉?予不得已也!”当然,任何科学要发展就要变。但是只是在与实际存在的事物、现象或实验的结果发生矛盾时才变。惟有数学,时常是在理性思维感到有了问题时就要变。而且,其他科学中“变”的倾向时常是由数学中的“变”直接或间接引起的。当然,数学中许多重要的变是由于直觉地感到有变的必要,感到只有变才能直视宇宙的真面目。但无论如何,是先从思维的王国里开始变,即否定自己。这种变的结果时常是“从一无所有之中创造了新的宇宙”。